Using Pharmacogenomics to Inform Depression Treatment

Holly Johnson, Ph.D.
Unmet Medical Need from Treatment As Usual

Less than 40% of patients achieve remission with initial drug treatment. With each additional medication trial, the chance of remission decreases, while treatment intolerance increases.

<table>
<thead>
<tr>
<th># of Medication Treatments</th>
<th>Remission Rate</th>
<th>Intolerance Rate (Side Effects)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37%</td>
<td>16%</td>
</tr>
<tr>
<td>2</td>
<td>31%</td>
<td>20%</td>
</tr>
<tr>
<td>3</td>
<td>14%</td>
<td>26%</td>
</tr>
<tr>
<td>4</td>
<td>13%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Why Are They Failing?

Here are some of the usual culprits:
- Adherence
- Environmental Factors
- Cost / Insurance
- Adverse Effects

But have you considered that genetic variability may undermine medication choices and may be a factor in treatment failure?
Personalized Medication Selection Factors

- Patient experience
- Pharmacogenomics
- Illness
- Adherence
- Adverse effects
- Family history
- Cost
Pharmacodynamics and Pharmacokinetics

Pharmacodynamic variation changes how the drug affects the body

Pharmacokinetic variation changes how the body affects the drug

Systemic Circulation

Excretion
How Genetics Can Affect Medication Blood Levels

Phenotypes

Ultrarapid Metabolizer
Breaks down medications rapidly. May not get enough medication at normal doses.

Extensive (Normal) Metabolizer
Breaks down medications normally. Has normal amounts of medication at normal doses.

Intermediate Metabolizer
Breaks down medications slowly. May have too much medication at normal doses.

Poor Metabolizer
Breaks down medications very slowly. May experience side effects at normal doses.
The GeneSight® Psychotropic Report

GeneSight® Psychotropic
Pharmacogenomic Test

<table>
<thead>
<tr>
<th>Patient, Sample</th>
<th>Order Number: 3740219</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Birth: 7/22/1984</td>
<td>Report Date: 5/12/2021</td>
</tr>
<tr>
<td>Clinician: Sample Clinician</td>
<td>Reference: 145CIP</td>
</tr>
</tbody>
</table>

Questions about report interpretation?
Contact our medical information team:
855.891.9415 | medinfo@genesight.com

Antidepressants

Use as Directed
- desvenlafaxine (Pristiq®)
- levomilnacipran (Fetzima®)
- vilazodone (Viibryd®)

Moderate Gene-drug Interaction
- trazodone (Desyrel®) 1
- venlafaxine (Effexor®) 1
- fluoxetine (Prozac®) 1,4
- bupropion (Wellbutrin®) 1,6
- citalopram (Celexa®) 3,4
- escitalopram (Lexapro®) 3,4

Significant Gene-drug Interaction
- selegiline (Emsam®) 2
- mirtazapine (Remeron®) 1,6
- sertraline (Zoloft®) 2,4
- amitriptyline (Elavil®) 1,6,8
- clomipramine (Anafranil®) 1,6,8
- desipramine (Norpramin®) 1,6,8
- doxepin (Sinequan®) 1,6,8
- duloxetine (Cymbalta®) 1,6,8
- imipramine (Tofranil®) 1,6,8
- nortriptyline (Pamelor®) 1,6,8
- vortioxetine (Trintellix®) 1,6,8
- fluvoxamine (Luvox®) 1,4,6,8
- paroxetine (Paxil®) 1,4,6,8
What are the Clinical Considerations?

Clinical Considerations
These state rationale for a medication’s classification and offer treatment adjustments if a clinician desires to use this medication.

Clinical Considerations
1: Serum level may be too high, lower doses may be required.
2: Serum level may be too low, higher doses may be required.
3: Difficult to predict dose adjustments due to conflicting variations in metabolism.
4: Genotype may impact drug mechanism of action and result in moderately reduced efficacy.
6: Use of this drug may increase the risk of side effects.
8: FDA label identifies a potential gene-drug interaction for this medication.
Interpreting **Combinatorial** Pharmacogenomic Testing Can Get Complex

<table>
<thead>
<tr>
<th>Pharmacokinetic Markers</th>
<th>Pharmacodynamic Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP2D6</td>
<td>ADRA2A</td>
</tr>
<tr>
<td>CYP2D6 + CYP2C19</td>
<td>HLA-A*3101</td>
</tr>
<tr>
<td>CYP2D6 + CYP2C19 + CYP1A2</td>
<td>HLA-B*1502</td>
</tr>
<tr>
<td>CYP2D6 + CYP2C19 + CYP1A2 + CYP2C9 + CYP3A4</td>
<td>HTR2A</td>
</tr>
<tr>
<td>CYP2D6 + CYP2C19 + CYP1A2 + CYP2C9 + CYP3A4 + CYP2B6</td>
<td>SLC6A4</td>
</tr>
<tr>
<td>CYP2D6 + CYP2C19 + CYP1A2 + CYP2C9 + CYP3A4 + CYP2B6 + UGT1A4</td>
<td></td>
</tr>
<tr>
<td>CYP2D6 + CYP2C19 + CYP1A2 + CYP2C9 + CYP3A4 + CYP2B6 + UGT1A4 + UGT2B15 + CES1A1</td>
<td></td>
</tr>
</tbody>
</table>

1,990,656 resultant composite phenotypes based on the 14 genes in the GeneSight® algorithm
Psychotropic Medications Are Processed Through Multiple Genetic Pathways

Pharmacodynamic Genes
- HLA-A*3101
- HLA-B*1502
- SLC6A4
- HTR2A
- ADRA2A

Pharmacokinetic Genes
- CYP2D6
- CYP2C19
- CYP2C9
- CYP3A4
- CYP2B6
- CYP1A2
- UGT1A4
- UGT2B15
- CES1A1
Medications Often Work Through a Unique Combination of These Genetically Controlled Pathways

- Fluoxetine (Prozac®)
- Bupropion (Wellbutrin®)
- Vortioxetine (Trintellix®)
- Paroxetine (Paxil®)
- Duloxetine (Cymbalta®)
- Vilazodone (Viibryd®)
- Escitalopram (Lexapro®)
The Significance of Those Genes Varies by Medication

Fluoxetine (Prozac®)

SLC6A4 CYP2D6 CYP2C19 CYP2C9 CYP3A4
A Patient’s Unique Genetics Impact the Activity Level of Those Pathways

Fluoxetine (Prozac®)

- CYP2C19
- CYP2D6
- CYP2C9
- SLC0A4
- CYP3A4
The GeneSight® Psychototropic Report Categorizes Medications and Provides Clinical Considerations Based on a Combined Assessment of the Drug’s Pharmacology and the Relevant Genetic Pathways

Significant Gene-Drug Interaction

| Fluoxetine (Prozac®) | 1,6 |

Clinical Considerations
1: Serum level may be too high, lower doses may be required.
6: Use of this drug may increase risk of side effects.
The GeneSight® Psychotropic Test Analyzes All 61 Medications on Our Panel Using This Approach

<table>
<thead>
<tr>
<th>Use as Directed</th>
<th>Moderate Gene-drug Interaction</th>
<th>Significant Gene-drug Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>desvenlafaxine (Pristiq®)</td>
<td>trazodone (Desyrel®)</td>
<td>selegiline (Emsam®)</td>
</tr>
<tr>
<td>levomilnacipran (Fetzima®)</td>
<td>venlafaxine (Effexor®)</td>
<td>mirtazapine (Remeron®)</td>
</tr>
<tr>
<td>vilazodone (Viibryd®)</td>
<td>fluoxetine (Prozac®)</td>
<td>sertraline (Zoloft®)</td>
</tr>
<tr>
<td></td>
<td>bupropion (Wellbutrin®)</td>
<td>amitriptyline (Elavil®)</td>
</tr>
<tr>
<td></td>
<td>citalopram (Celexa®)</td>
<td>clomipramine (Anafranil®)</td>
</tr>
<tr>
<td></td>
<td>escitalopram (Lexapro®)</td>
<td>desipramine (Norpramin®)</td>
</tr>
</tbody>
</table>

		doxepin (Sinequan®)
		duloxetine (Cymbalta®)
		imipramine (Tofranil®)
		nortriptyline (Pamelor®)
		vortioxetine (Trintellix®)
		fluvoxamine (Luvox®)
		paroxetine (Paxil®)

Order Number: 3740219
Report Date: 5/12/2021
Reference: 145CIP

Questions about report interpretation?
Contact our medical information team:
855.891.9415 | medinfo@genesight.com
GeneSight® is Easy to Implement in Practice

Step 1
Place your order on myGeneSight.com.

Step 2
You or a member of your staff collect the patient’s DNA sample with a simple cheek swab
OR
your patient collects the sample at home using our patient collection kit.

Step 3
Your patient’s sample is sent to our lab for analysis. After the sample is received, results are typically available in about 2 days.

Step 4
Use the genetic insights from the GeneSight report to inform your treatment.
GeneSight® Supports Improved Outcomes in MDD

Identifies medications with significant gene-drug interactions (GDIs) to inform prescribing

10 clinical utility publications demonstrating improvement in patient outcomes \(^1\)\(^{-10}\)

Level 1 evidence demonstrating 49% relative improvement in remission \(^{10}\)

Saved >$1,000 in total annual medication costs compared to treatment as usual \(^{11}\)

Note: Not all patients who receive the GeneSight test will achieve remission or experience cost savings.

GeneSight® Arm Realized a Significant Improvement in All Outcomes

Level 1 evidence: Relative improvement in patient outcomes compared to TAU

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Definition</th>
<th>Improvement</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remission</td>
<td>HAM-D17 score ≤7</td>
<td>49%</td>
<td>0.001</td>
</tr>
<tr>
<td>Response</td>
<td>≥50% reduction in HAM-D17 score</td>
<td>40%</td>
<td><0.001</td>
</tr>
<tr>
<td>Symptom Improvement</td>
<td>Avg % decrease in HAM-D17</td>
<td>43%</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Note: Not all patients who receive the GeneSight test will experience remission, response, or symptom improvement. Brown LC, et al. Pharmacogenomics. 2020 Jun;21(8):559-569.
Patients in the GeneSight® Arm had Lower Total Annual Medication Costs Compared to TAU*¹

GeneSight helped to increase adherence and reduce polypharmacy

- Patients in the GeneSight arm stayed on a new medication 46% longer
- 20% of patients were on fewer medications

*¹ Not all patients who receive the GeneSight Psychotropic test will experience cost savings.
Questions? Comments?
Feedback on this presentation?

Holly Johnson, Ph.D.
holly.johnson@myriad.com
(513) 701-7618